nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.50 1-8
向家坝水电站下游河道冲淤演变规律
基金项目(Foundation): 国家自然科学基金项目(U2040217,U2340223)
邮箱(Email): denganj@iwhr.com;
DOI: 10.16239/j.cnki.0468-155x.2025.04.001
摘要:

基于2008—2023年实测资料分析了向家坝水电站下游河道的冲淤演变规律,采用数值模拟计算了大流量条件下近坝河段的极限冲刷情况。天然情况下,向家坝水电站下游河道河床相对稳定,冲淤基本平衡;施工截流期,坝下游4.0 km范围内的河段冲刷明显,深泓线平均下切5.0 m左右,而距坝超过4.0 km的河段整体变化较小;水库运用后,坝下游32.0 km的河段深泓平均下切0.33 m,其中距坝13.0~16.0 km的河段整体下切5.0 m左右,主要与采砂有关;整体来看,2012—2023年下游河道累积冲刷1 103万m3,其中人工采砂917万m3,河道水流冲刷仅186万m3;在20 000 m3/s大流量条件下,下游距坝2.1 km的断面刷深3.63 m,距坝6.0 km的断面冲刷2.21 m,大流量条件下向家坝下游河床仍有可能发生较大冲刷。

Abstract:

Based on observed data from 2008 to 2023, the channel evolution of erosion and deposition downstream of the Xiangjiaba Hydropower Station was systematically analyzed, and the estimate extreme scour depth near the dam during high flow events was simulated. The results show that the downstream channel remains relatively stable with erosion and deposition in general balance under natural conditions. However, the significant scouring has been observed within 4. 0 km downstream of the dam during the construction period,where the deep thalweg line undercut by an average of approximately 5. 0 m, while changes beyond 4. 0 km are minor. Since the operation of the hydropower station, an average thalweg undercut of 0. 33 m has occurred in the entire study area of 32. 0 km in length, the undercut in the reach 13. 0 to 16. 0 km downstream of the dam is about 5. 0 m, which is mainly caused by the sand mining. Between 2012 and 2023, totaled cumulative erosion is 11. 03 million m3, of which 9. 17 million m3 resulted from artificial sand mining and only 1. 86million m3 from natural erosion. Numerical simulations show that under a high flow discharge of 20 000 m3/s,the extreme scour depths can reach to 3. 63 m at 2. 1 km and 2. 21 m at 6. 0 km downstream of the dam,suggesting that significant scouring may still occur when the strong flood occurs.

参考文献

[1]钱宁,张仁,周志德.河床演变学[M].北京:科学出版社,1987.

[2]朱玲玲,陈翠华,张继顺.金沙江下游水沙变异及其宏观效应研究[J].泥沙研究,2016(5):20-27.

[3]董炳江,许全喜,袁晶,等.近年来三峡水库坝下游河道强烈冲刷机理分析[J].泥沙研究,2019,44(5):42-47.

[4]王志力,陆永军.向家坝水利枢纽下泄非恒定流的数值模拟[J].水利水电科技进展,2008(3):12-15.

[5]张绪进,胡真真,刘亚辉,等.向家坝水电站日调节非恒定流的传播特征研究[J].水道港口,2015,36(5):414-418.

[6]曹民雄,庞雪松,王秀红,等.向家坝水电站下游非恒定水沙特性研究[J].水利水运工程学报,2011(1):28-34.

[7]母德伟,王永强,李学明,等.向家坝日调节非恒定流对下游航运条件影响研究[J].四川大学学报(工程科学版),2014,46(6):71-77.

[8]王永强,母德伟,李学明,等.兼顾下游航运要求的向家坝水电站枯水期日发电优化运行方式[J].清华大学学报(自然科学版),2015,55(2):170-175+183.

[9]陈绪坚.金沙江梯级水库下游水沙过程非恒定变化及其对通航条件的影响[J].水利学报,2019,50(2):218-224.

[10]左利钦,孙路,陆永军,等.长江梯级水库下游重点滩段河势及航道条件变化[J].水力发电学报,2015,34(3):79-89.

[11]陆琴,邓安军,郭庆超,等.水库下游卵石河床冲淤演变规律及机理研究[J].泥沙研究,2019,44(2):26-32.

[12]尹晔.山区河流水库下游河道冲淤演变研究[D].北京:中国水利水电科学研究院,2017.

[13]韩其为.非均匀悬移质不平衡输沙[M].北京:科学出版社,2013.

[14]韩其为.泥沙起动规律及起动流速[J].泥沙研究,1982(2):11-26.

[15]韩其为.水库淤积[M].北京:科学出版社,2003.

[16]韩其为,何明民.泥沙起动规律及起动流速[M].北京:科学出版社,1999.

[17]毛继新,韩其为.水库下游河床粗化计算模型[J].泥沙研究,2001(1):57-61.

[18]杜泽东,秦蕾蕾,董先勇.金沙江向家坝水电站下游河道2020年淤积成因分析[J].泥沙研究,2024,49(1):45-50.

基本信息:

DOI:10.16239/j.cnki.0468-155x.2025.04.001

中图分类号:TV147

引用信息:

[1]冯志毅,邓安军,陆琴等.向家坝水电站下游河道冲淤演变规律[J].泥沙研究,2025,50(04):1-8.DOI:10.16239/j.cnki.0468-155x.2025.04.001.

基金信息:

国家自然科学基金项目(U2040217,U2340223)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索